SABRE – A New Approach to Low Cost, High Cadence Space Access

...or how to achieve affordable, effective space access...

Robert Bond
Reaction Engines
After 60 years of space access....
...some amazing things have been achieved

Tangible benefits to our everyday life

Expansion of our understanding
Accessing Space – The Rocket Launch Vehicle

The rocket has carried us far...however current launchers have some undesirable characteristics:

• High cost
• Poor operability
• Low reliability

...which increase the cost of space assets themselves and restrict growth of the space market

...little change in launch vehicle technology in over 60 years...
1. Breakthroughs in propulsion technology lead system evolution ★
2. Advantage of air-breathing propulsion
3. Horizontal operations decrease cost and increase operability
4. Reusability allows high flight rate and leads to continuous improvements
A Few Lessons from 60+ Years of Aircraft Evolution

1. Breakthroughs in propulsion technology lead system evolution
2. Advantage of air-breathing propulsion
3. Horizontal operations decrease cost and increase operability
4. Reusability allows high flight rate and leads to continuous improvements
Bringing the Aviation Model to Space Launch

1. Early launchers rapidly pushed the rocket performance boundary
2. Many new rocket-based entrants currently seeking to improve cost and operability – but achievable gains are only moderate
3. New architectures and possibilities require a drastic increase in launch system propulsion performance
4. Rocket-based propulsion systems, on their own, are not able to deliver the performance required to realize a launch system with aircraft-like operability

A Revolution in Launch Systems Requires a Revolution in Propulsion
The SABRE Engine

SABRE - Synergetic Air Breathing Rocket Engine – is a new class of engine able to operate from take-off to Mach 5+ in air-breathing mode, and to orbital velocity in rocket mode.

SABRE and SABRE-derived technology has potential applications to both space access and high-speed flight.
The SABRE Engine

1. Cool
 Cool the hot incoming air from 1000°C in 1/20th second (Mach 5)

2. Regenerate
 Re-inject the heat captured into the engine to drive the turbo-machinery, thereby reducing fuel consumption

3. Integrate
 Combine jet and rocket engines to create an engine class capable of high Mach atmospheric and Space flight in a single engine
SABRE Performance

SABRE provides improved performance over a wide speed range for thrust and efficiency compared with other propulsion systems.

1. Operates from a standing start
2. High fuel efficiency in air breathing mode up to Mach 5.5
3. Switches to rocket mode when altitude too high to use atmospheric air
4. Fuel efficiency drops to align with conventional rocket when switching to rocket mode as liquid oxygen has to be used instead of atmospheric air
5. Step change in thrust to weight ratio when switched to rocket mode to power the platform into space
Characteristics of a SABRE-based Launch System

- **Low Cost** driven by reusability and potential for high flight rate
- **High Operability** enabled by horizontal take-off and landing and other aircraft-like operations
- **High Reliability** enabled by reusability and full abort capability
Example Mission Profile – Rapid Response TSTO

Horizontal take-off from conventional runway and return to same location

Air-breathing-to-rocket mode transition at Mach 5

Upper stage places satellite in selected orbit

SABRE-powered booster stage
- Payload: 2.5t to LEO
- Vehicle GTOM: 150t
Example Mission Profile – Rapid Response TSTO

Such a system has potential utility in:

• On-demand deployment of space-based assets
• Rapid reconstitution of satellite networks
• Launch from multiple launch sites
• ISR capability at very high altitude (>100 km) over denied areas without incursion of air-space
Reaction Engines

• Reaction Engines Limited (REL) is a private UK company developing the SABRE advanced combined cycle air-breathing engine (Synergetic Air-Breathing Rocket Engine)

• SABRE and SABRE-derived technologies have application to a variety of space access and high-speed aircraft systems

• Company has raised over £100M from private and strategic investors as well as a UK government grant

A Revolution in Launch Systems Requires a Revolution in Propulsion
SABRE Technology Development – Heat Exchangers

Requirement
- Cool the airflow over 700°C in $1/20^{th}$ of a second
- High MW-class heat transfer

Development
- Manufacturing breakthrough achieved
- Innovative frost control system
- Extensive validation at ambient conditions
- Pre-cooler testing at Mach 5 conditions in 2018